

60 Digital Fundamentals

moves through instructions sequentially. After executing each instruction, the PC is incremented,
and a new instruction is fetched from the address indicated by the PC. The major exception to this
linear behavior is when branch instructions are encountered. Branch instructions exist specifically to
override the sequential execution of instructions. When the instruction decoder fetches a branch in-
struction, it must determine the condition for the branch. If the condition is met (e.g., the ALU zero
flag is asserted), the

branch target address

 is loaded into the PC. Now, when the instruction decoder
goes to fetch the next instruction, the PC will point to a new part of the instruction sequence instead
of simply the next program memory location.

3.3 SUBROUTINES AND THE STACK

Most programs are organized into multiple blocks of instructions called

subroutines

 rather than a
single large sequence of instructions. Subroutines are located apart from the main program segment
and are invoked by a subroutine call. This call is a type of branch instruction that temporarily jumps
the microprocessor’s PC to the subroutine, allowing it to be executed. When the subroutine has com-
peted, control is returned to the program segment that called it via a return from subroutine instruc-
tion. Subroutines provide several benefits to a program, including modularity and ease of reuse. A
modular subroutine is one that can be relocated in different parts of the same program while still per-
forming the same basic function. An example of a modular subroutine is one that sorts a list of num-
bers in ascending order. This sorting subroutine can be called by multiple sections of a program and
will perform the same operation on multiple lists. Reuse is related to modularity and takes the con-
cept a step farther by enabling the subroutine to be transplanted from one program to another with-
out modification. This concept greatly speeds the software development process.

Almost all microprocessors provide inherent support for subroutines in their architectures and in-
struction sets. Recall that the program counter keeps track of the next instruction to be executed and
that branch instructions provide a mechanism for loading a new value into the PC. Most branch in-
structions simply cause a new value to be loaded into the PC when their specific branch condition is
satisfied. Some branch instructions, however, not only reload the PC but also instruct the micropro-
cessor to save the current value of the PC off to the side for later recall. This stored PC value, or

sub-
routine return address

, is what enables the subroutine to eventually return control to the program
that called it. Subroutine call instructions are sometimes called

branch-to-subroutine

or

jump-to-
subroutine,

 and they may be unconditional.
When a branch-to-subroutine is executed, the PC is saved into a data structure called a

stack

. The
stack is a region of data memory that is set aside by the programmer specifically for the main pur-
pose of storing the microprocessor’s state information when it branches to a subroutine. Other uses
for the stack will be mentioned shortly. A stack is a

last-in, first-out

 memory structure. When data is
stored on the stack, it is

pushed

 on. When data is removed from the stack, it is

popped

 off. Popping
the stack recalls the most recently pushed data. The first datum to be pushed onto the stack will be
the last to be popped. A

stack pointer

(SP) holds a memory address that identifies the

top

 of the stack
at any given time. The SP decrements as entries are pushed on and increments at they are popped off,
thereby growing the stack downward in memory as data is pushed on as shown in Fig. 3.5.

By pushing the PC onto the stack during a branch-to-subroutine, the microprocessor now has a
means to return to the calling routine at any time by restoring the PC to its previous value by simply
popping the stack. This operation is performed by a return-from-subroutine instruction. Many mi-
croprocessors push not only the PC onto the stack when calling a subroutine, but the accumulator
and ALU status flags as well. While this increases the complexity of a subroutine call and return
somewhat, it is useful to preserve the state of the calling routine so that it may resume control
smoothly when the subroutine ends.

-Balch.book Page 60 Thursday, May 15, 2003 3:46 PM

Basic Computer Architecture 61

The stack can store multiple entries, enabling multiple subroutines to be active at the same time.
If one subroutine calls another, the microprocessor must keep track of both subroutines’ return ad-
dresses in the order in which the subroutines have been called. This subroutine

nesting

process of
one calling another subroutine, which calls another subroutine, naturally conforms to the last-in,
first-out operation of a stack.

To implement a stack, a microprocessor contains a stack pointer register that is loaded by the pro-
grammer to establish the initial starting point, or top, of the stack. Figure 3.6 shows the hypothetical
microprocessor in more complete form with a stack pointer register.

Like the PC, the SP is a counter that is automatically modified by certain instructions. Not only do
subroutine branch and return instructions use the stack, there are also general-purpose push/pop in-
structions provided to enable the programmer to use the stack manually. The stack can make certain
calculations easier by pushing the partial results of individual calculations and then popping them as
they are combined into a final result.

The programmer must carefully manage the location and size of the stack. A microprocessor will
freely execute subroutine call, subroutine return, push, and pop instructions whenever they are en-
countered in the software. If an empty stack is popped, the microprocessor will oblige by reading
back whatever data value is present in memory at the time and then incrementing the SP. If a full
stack is pushed, the microprocessor will write the specified data to the location pointed to by the SP
and then decrement it. Depending on the exact circumstances, either of these operations can corrupt
other parts of the program or data that happens to be in the memory location that gets overwritten. It
is the programmer’s responsibility to leave enough free memory for the desired stack depth and then
to not nest too many subroutines simultaneously. The programmer must also ensure that there is
symmetry between push/pop and subroutine call/return operations. Issuing a return-from-subroutine

stack region
in memory

S
P

stack empty

N

N+1

N+2

N+3

N+4

N+5

address
locations

D0S
P

first entry
pushed

D0

S
P

second entry
pushed

D1
D0

S
P

third entry
pushed

D1
D2

third entry
popped

D0

S
P

D1
D0

S
P

D1
D3

fourth entry
pushed

D0

S
P

D1

fourth entry
popped

D0S
P

second entry
popped

top
of

stack

FIGURE 3.5 Generic stack operation.

Instruction
Fetch and
Decode

Program
Counter

(PC)

Accumulator
(ACC)

Arithmetic
Logic Unit

(ALU)

Stack
Pointer

(SP)

FIGURE 3.6 Microprocessor with stack pointer register.

-Balch.book Page 61 Thursday, May 15, 2003 3:46 PM

